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In the present work we analyze the stability of a steady plane d e t -  
onation wave within the framework of the following model of a deto- 
nation [1]: A thermally and calorically perfect gas flows at a constant 
supersonic speed in the direction o~ the axis z in the region z < O. In 
the neighborhood of the plane z = 0 the flow passes through a strong 
shock. Downstream of the shock the gas passes through a combustion 
Zone governed by the chemical  kinetic equation [2] 

d~ 
dt -- - -  L~'nPm-1 exp - -  A y .pz  " 

Here t3 is the mass concentration of reactant molecules, p is the 
pressure, and r is the specific volume; the activation energy A, the 
mean molecular weight of  the gas p, the degree of the reaction m, 
and the coefficient L are positive constants and m >-- 1. 

The chemical  reaction ends when 8 = 0. The detonation is called 
a Chapman-Jouguet detonation if at 8 = 0 the speed of the gas equals 
the local speed of sound. In the model under consideration there exists 
a steady one-dimensional  solution to the equations of hydrodynamics 
and kinetics 

w = w, (t - -  c~- 9, p = p ,  (1 + .rc~-J,), 
(0.D 

v = t ,  (t - -  ex-1), ~ = x-I  (c = (M ~ - -  1) (TM 2 + t)-x). 

Here w is the speed of the flow and M is the Maeh number in the 
region z < O. The subscript * denotes values at the Jouguet point, The 
function x = x (z) is defined by the equation 

1 

f yl-gm cy) {t q- [a (t -}- "fcy) -1 (1 - -  cy) -x] dy = 6z (t  "fcy)l-m exp 
1/x 

A m-1 _ _  _ p , - " c ~ .  
a = ~ p , x ~  ~ - -  2 w ,  ) 

In this paper we analyze the stability of  the basic solution (0.1) to 
the equations of hydrodynamics and chemical  kinetics with respect to 
small perturbations. Below we shall assume that the gas flows in a 
round cylindrical tube of radius r0. We sha l luse  a cylindrical system 
of coordinates with the tube axis as the z axis. Assuming that small  
perturbations of the flow, concentrated in the region z > 0, can be 
represented as a superposition of cylindrical harmonics, we shall ana-  
lyze the behavior of an individual harmonic. In that case the equation 
of the perturbed shock surface is 

zo = e ro exp (kro-lw,t  ~- inr Jn  (~nkrro-1)" 

Here k is a complex parameter, n is a natural number, llnk is the 
k-th root of the equation r = 0, and]~] << 1. 

Linearizing the governing equations about the basic solution and 
separating the variables, we can reduce the problem of small  pertur- 
bations to the following boundary-value problem for a linear system 0f 
ordinary differential equations: Find the set of  functions Yi (x) (1 - i 
-< 5) which satisfy over the interval (1, .0) the system of equations 

dy / dz  = [~,sAx (x) + ~nesA2 (z) + Aa (z)]y (0.2) 

and the following boundary conditions. 
(1) The conservation of mass, momentum,  energy, and concen- 

tration across the shock, which, in terms of the functions Yi (x), means 

y = y o - - ~ . s a l + ~ n ~ s a s + a 3  at x = t .  ( 0 . 3 )  

(2) The boundedness of the perturbations of the velocity vector, 
pressure, and density and the vanishing of the perturbation of the 
concentration at the Jouguet point, which means 

yi(z) (2~<i~<4), l /~y , (~ )  b o u n d e d .  

x- l y5  (:r) .--, 0 for x -o  o~ �9 ( 0 . 4 )  

Here the vector y(x) has the elements 

yi(x) (t % i % 5); s _:_ exp a/Zro . 

The elements of the matrices Aj (x) and of the vectors aj (1 - j ~- 
- 3) depend on the parameters y, c, a. and m. which shall be as- 
sumed to be constants. The expressiom for Aj (x) and aj are quite 
cumbersome and we shall not write them out. 

A value of X for which the problem (0.2)-(0.4) can be solved is 
called an eigenvalue o f  the problem. The existence of even one ei-  
genvalue with ReX ~ 0 would mean that the basic solution (0.1) is 
unstable. 

An analysis of the asymptotic behavior of the solutions to system 
(0.2) at x ~ ~ leads to the following result [1]: 

for ReX -> 0 the system (0.2) has four linearly independent soin- 
t iom which satisfy condition (0.4); 

for Re). < 0 the system (0.2) has one solution which satisfies con- 
dition (0.4). 

Thus the nature of the boundary-value problem (0.2)-(0.4) is 
markedly different in the cases ReX >- 0 and ReX < 0. In the latter 
case the eigenvalue problem has no solution, in general, since for 
ReX < 0 the conditions (O.3), (0.4) for the fifth-order system (0.2) are 
equivalent to eight homogeneous boundary conditiom. 

The problem of  finding the eigenvahies with nonnegative real part 
can be reduced to the solution of the equation 

F ()~) ~-- det Y (L zo) = 0. (0.5) 

Here the first column of the matrix Y represents the value at x = 
= x0 - 1 of the solution of the Cauehy problem (0.3) for the system 
(0.2), and the other four columns of the matrix Y are the values at 
x = x0 of four linearly independent solutious of the system (0.2) which 
satisfy condition (0.4). 

w W e  s h a l l  a n a l y z e  t h e  q u a l i t a t i v e  c h a r a c t e r i s t i c s  

o f  t h e  e i g e n v a l u e  p r o b l e m  ( 0 . 2 ) - ( 0 . 4 ) .  L e t  M n k  d e n o t e  

t h e  s e t  o f  e i g e n v a l u e s  X w h i c h  c o r r e s p o n d  t o  f i x e d  v a l -  

u e s  o f  n ,  k ,  a n d  a s s u m e  p = ~ n k  s .  T h e n  t h e  f o l l o w i n g  

a s s e r t i o n s  h o l d .  

1 ~ E v e r y  s e t  M n k  i s  b o u n d e d .  T h e  d i a m e t e r  

d n k  o f  t h e  s e t  M n k  h a s  t h e  b o u n d  

dn/c ~ Co m a x  (~n1~, s -1) (co = const). 

2 ~ E v e r y  s e t  M n k  i s  s y m m e t r i c a l  w i t h  r e -  

s p e c t  t o  t h e  a x i s  I m  X = 0 .  

3 ~ E v e r y  s e t  M n k  i s  c l o s e d ,  d i s c r e t e ,  a n d  

h a s  n o  p o i n t s  o f  a c c u m u l a t i o n  o u t s i d e  t h e  a x i s  

R e X =  0 .  

4 ~ T h e  s e t  M01 c o n t a i n s  t h e  p o i n t  X = 0 ( n o t e  

t h a t  ~01 = 0 ) .  

5 ~ I f  c >- 1 / 2 ,  t h e n  f o r  a n y  ~ > 0 t h e r e  e x i s t s  

a p , ( ~ )  s u c h  t h a t  f o r  p ~ p , ( c Q  t h e r e  a r e  n o  

e i g e n v a l u e s  i n  t h e  r e g i o n  Bc~ d e f i n e d  b y  t h e  

i n e q u a l i t i e s  
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6% I f  c < 1/2,  then  t he r e  exis t s  a va lue  P0 
such that  for  p -> O0 the re  a re  no e igenvalues  
in  the region  Re X -> 0. 

In the following we shal l  prove these  a s s e r t i o n s .  
Asse r t i on  2 ~ follows f rom the fact that the coeffi-  

c ients  of the s y s t e m  (0.2) and the Cauchy data (0.3) 
a re  rea i  for  rea l  X. 

To prove A s s e r t i o n  3 ~ note that every  i n t e r i o r  
point of the ha l f -p lane  Re X >- 0 is  an i n t e r i o r  point of 
one of the reg ions  D~/2, Go, H~, defined r e s p e c -  
t ive ly  by 

As shown in  [1], the e igenvalues  k s Da/2(X s Go/ ,  

~ H~) a r e  ze ros  of a funct ion which is analyt ic  ins ide  
the region  D~/2(G~,  Ha) and cont inuous on i ts  bound-  
a r y .  The case  Re ~ < 0 can  be t r ea ted  in  an  analogous 
w a y .  

The proof of A s s e r t i o n  4 ~ is  based on the fact that 
the sys t em of equat ions of hydrod3mamics and k ine t ics  
admi ts  a t r a n s l a t i o n  t r a n s f o r m a t i o n  along the z ax is .  
A p p l y i n g  this  t r a n s f o r m a t i o n  to the bas ic  solut ion 
(0.1)~ we find that  the se t  of funct ions  

u'  = v '  -= O, w'  = - -  cw , x - ~ r  odx / da. 

p' = "gcp ,x -=rodx  / d z .  

�9 ' = - -  c ~ , x ~ r o d x  / d z  ~' = 2x-arodx  / d z  (1.1) 

r e p r e s e n t s  the so lu t ion  to a l i nea r i zed  s y s t e m .  This  
solut ion sa t i s f i e s  the conse rva t i on  laws at  the sur face  
of the pe r tu rbed  shock z 0 = e r  0. Thus solut ion (1.1) 
r e p r e s e n t s  the pe r tu rba t i on  of the bas ic  solut ion due 
to a s m a l l  t r a n s l a t i o n  of the shock front  along the z 
ax is .  The eigerffunction y (x) of the  p rob lem (0.2)-(0.4) ,  
which c o r r e s p o n d s  to solut ion (1.1), has the following 
e l emen t s :  

cx -~rn+'l' b (t) 
~ ' i = - -  (a : - -c)  b (x) " '  Y2 = Ya ~--~ O'  

~]~ = C2 (3" -~ 1) X -2m+1 b (t) 2x -2m+2 b (t) 
( z - - c )  b(~)  ' Y ~ - -  ( ~ - - c ) b ( ~ )  ' (1 .2)  

b(x)  [XA-TC~I-m [ a c [ - - ( ' r - - t ) x 4 * ; c ]  

It can be eas i ly  seen that  the e igenvalue  c o r r e -  
sponding to (1.2) belongs  to the set  Mot. 

We shal l  prove  A s s e r t i o n  1 ~ together  with A s s e r -  
t ions  5 ~ and 6 ~ 

A s s e r t i o n s  5 ~ and 6 ~ a re  connected with the p rob lem 
of the s t ab i l i t y  of a detonat ion with r e spec t  to s m a l l -  
sca le  p e r t u r b a t i o n s .  The point  is  that  for  fixed T, c, 
a, and m the re  holds the r e l a t i on  

p = ~,,ks = l~,~k6 = i d ~ k r o  - i  �9 

Here  d is  the effect ive width of the chemica l  r e a c -  
t ion  zone [2] and l i s  a cons tan t .  The p a r a m e t e r  
d~nkr0 -1 has a s imp le  geome t r i c a l  meaning:  it  c h a r a c -  
t e r i z e s  the ra t io  of the r eac t i on  zone width to the t r a n s -  
v e r s e  sca l e  of the shock su r f ace  p e r t u r b a t i o n s .  Thus 
the absence  of e igenva lues  of the p rob l em (0.2)-(0.4)  
with Re I -> 0 for  p --* ,~ ind ica tes  the s t ab i l i t y  of the 

bas ic  solut ion (0.1) with r e spec t  to s m a l l - s c a l e  p e r -  
t u rba t ions .  

The proof Of Asse r t i ons  1 ~ 5 ~ and 6 ~ is  as follows. 
The sys t em of equat ions (0.2) and condit ions (0.3) for  
~nk ~ 0 can be wr i t ten  in the form 

dy / dx : {f) [%'~41 (X) § ~2 (X)] § A 3 (x)} 

(v = kS.~-~), (1.3) 

Y = Yo ~ P (v al § a2) § as at x = I . (1.4) 

Thus the p rob lem of de t e rmin ing  the e igenvalues  
k(~nk , s) c a n b e  re fo rmula ted  as a p rob lem of finding 
the e igenvalues  v(p).  Let us  define the regions  B%c~, 
Ba,~, and Bl ,~ ~ of the v plane by the re la t ions  

i--c--a-~Bev<i § I l m v [ - ~ < c r  

(region B~,=), 

0 < Fie v-~< =, I m ~ l < l / ~ V - 7  § t § a 

(region ga,=) , 

R o y > 0 ,  v ~ B ~ , ~ U B ~  (0 < a < */5 (t - -  c)) 

(regionBl,~ ~ 

and l e t  BI,o~ denote the c losu re  of the region Bi,~ ~ 
We shal l  prove below that for  any ff > 0 the re  exis ts  

a t31 (c~) such that  for  p -~ 131(ff) t he re  a re  no e igenval -  
ues in the reg ion  B1, ~ ,  The proof of the absence  o f e i -  
genvalues  v E B2, a for l a rge  va lues  of p is  ve ry  s i m -  
i l a r  to the proof of the preceding  a s s e r t i o n .  Here we 
shal l  omit  the ana lys i s  of the p rob lem (0.2)-(0.4)  in 
the c a s e p - - ~ ,  vEBa,  ~0 

Thus,  le t  v E Bl,c~. As shown in [1], the re  exis t s  a 
l i nea r  t r a n s f o r m a t i o n  

y = M ( x ,  . ) u ,  

which is nons i ngu l a r  for  x -> 1, v 6 Bl,c~ and t r a n s -  

fo rms  s y s t e m  (0.2) to the fo rm 

du / dx = [pW (x, ~) + P (z) § 
(1.5) 

+ x-'I,Q (x ,  ~) + z-~t~ (x,  ~)] u 

Here the e l ements  of the diagonal m a t r i c e s  W (x, v), 
P (x) a r e  defined as 

m- f x } W n = v b ( z )  x2 ~ l ~ [ t + ' ~ c x  - l §  , 

w22 = vb (x) x ~ ' ~ - ~ ' ~  [I + Tcx -~ - - v  (x, v)] - -  t }  {c (~ § i) 

wjj = -- vb (x) x ~'~-3 (3 < / < 5), 

(~ (x, ,~) = {(t + ~rcx -~) ( i  - -  ~z- ')  • 

X [t  + c ( r  + t)  x '  (1 - -  cx -1) v-q} ' , ) ,  ( 1 . 6 )  

P,I  = 1/2x, Pss = - - ( 2 m - - l ) / x ,  

p~j = 0 <(2 ~ / ~< 4) (1.7) 

and the e l emen t s  qik(X, v), r ik(X , v) ( i  <- i, k _< 5) of 
the m a t r i c e s  Q, R can  be expanded in power s e r i e s  in 
x -1, x >- 1 for  all  v E B1, ~ and a r e  analyt ic  in v ins ide  
the region B1,  ~ a n d  cont inuous on i ts  boundary  for  al l  
x -> 1. Of a l l  the funct ions  qik (x, u), the only ones  
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which a r e  d i f fe ren t  f rom z e r o  a r e  ql i ,  q i t (  2 < i _< 5); 
f u r t h e r m o r e ,  r l i ( x  , v) = r i , ( x  , v) = 0(2 -< i --- 5), 

It ha s  been  shown in [1] tha t  i f  the  so lu t ion  y (x ,  v) 
of the  s y s t e m  (0.2) s a t i s f i e s  condi t ion  (0 .4) ,  then the 
so lu t ion  u (x ,  v) = YI-1 (x, v ) y ( x ,  v) of  s y s t e m  (I .5)  a l so  
s a t i s f i e s  th is  condi t ion ,  and v ice  v e r s a .  Hence i t  fo l -  
lows that  the  i n i t i a l - v a l u e  p r o b l e m  (0 .2)- (0 .4)  is  
equiva len t  to the  fol lowing b o u n d a r y - v a l u e  p r o b l e m :  
find a vec to r - func t i on  u(x ,  v) which o v e r  the i n t e rva l  
(1, .o) s a t i s f i e s  equat ion (1.5) and condi t ions  (0.4) a t  
x - - -  ooand 

u = Uo ~ [M (1, v) l-*Yo (v) at  ~ = I .  ( 1 .8 )  

The v e c t o r  a 0 can  be r e p r e s e n t e d  in the  f o r m  

u0 = pul (v) + u2 (v), (1.9) 

w h e r e  the e l e m e n t s  of the  v e c t o r s  v- lu t  (v), u 2 (v) a r e  
r e g u l a r  in the r eg ion  Bl,o~ and a r e  cont inuous on i t s  
boundary ;  the function v - l u n ( v )  has  no z e r o s  in the 
reg ion  BI, ~ . 

In a c c o r d a n c e  with the r e s u l t s  of  [1], for  any 
v ~ Bl,o~ t h e r e  ex i s t  four  l i n e a r l y  independent  so lu t ions  
Uk(X, v, p) (2 -< k -< 5) of  equat ion (1.5) which s a t i s f y  
condi t ion  (0.4). 

C o n s i d e r  the m a t r i x  U ( v ,p )  whose f i r s t  column is  
the  v e c t o r  u 0 (v, p) and whose  o the r  co lumns  a r e  the  
v e c t o r s  Uk(1, v, p) (2 -< k -< 5). It can be e a s i l y  seen  
tha t  the e igenva lues  v 6 Bt ,~  of the p r o b l e m  (1.5), 
(1.8), (0.4) a r e  the roo t s  of the  equat ion 

S (v, p) _= det U (v, p) = 0. (1.10) 

We shal l  show tha t  fo r  l a r g e  va lues  of  I pvl th is  
equat ion has  no so lu t ions  in the r eg ion  BI,c~. 

Note tha t  for  any x ~ (1, ~), v ~ B1, a t h e r e  hold the  
inequa l i t i e s  

Re [wu (x, v) -- w .  (z, ~)] > O, 

Pu (x) - -  Pit (x) > 0 (2 < i < 5).  ( 1 . 1 1 )  

Using the subs t i tu t ion  

u i =  ~hicxp [! ( D W l l - q  - pn) dx ]  (1~<i~<5) 

we can r educe  the  s y s t e m  (1.5) to the s y s t e m  of in te -  
g r a l  equat ions  

c~ 5 

q, l (x ,  v) =- t - -  f ~ / l~ ( t '  ~) ~l~l (t, v) dt, 
x k = l  

qi~ (x, v) -- I exp {[pw~i (% v) -}- pi~ (~:) - -  pu,~ (r, v), 
l 

(1.12) 
- - P H ( V ) ] d v }  ~ / ~ ( t ,  v)~ l~  (t, v) dt ( 2 g i g 5 )  

(/i~r : :  t-Y'qih" -~- t-'~r~h')" 

Using (1.11) one can show tha t  for  any cr > 0 t h e r e  
e x i s t s  an N(~)  such that  fo r  x ~ (1, r162 v ~ Bt ,~ ,  I pvl -> 
--- N ( a )  the s y s t e m  (1.12) has  a so lu t ion  of  the fo rm 

x 

o x p  f t-21'll (t, v)dt]  ,~. (,, .) = [~,-~ o ( I  ov I-~)1 [~ 

(l < i ~< 5) 

for  I pvl ~ ~o. This  solut ion c o r r e s p o n d s  to a solut ion 
of s y s t e m  (1.5) which has  the a sympto t i c  r e p r e s e n t a -  
t ion 

x 

fo r  a l l  x C (1, 0o), v E Bl,ce and p such that  I pul >- N ( a )  
for  I pvl  "--* ~.  

Let us  a p p l y t o  the s y s t e m  (1.5) the l i n e a r  s u b s t i -  
tut ion u = L0v where  the f i r s t  column of the m a t r i x  L 0 
i s  the v e c t o r  u 1 and i ts  o the r  co lumns  a r e  the v e c t o r s  
ej (2 -< j < 5) (ej is  a v e c t o r  whose j - t h  e l emen t  is  
uni ty  and whose o the r  e l e m e n t s  a r e  a l l  ze ro) .  The 
s y s t e m  of equat ions for  the functions v i (1  - i -< 5) can 
be  r educed  to the f o u r t h - o r d e r  s y s t e m  

d~ i 5 
dz -- lpwii(x' v)-~ pii(x)] zq ~- x -2 ~ ri~ ~ v) v~ 

R= 2 

(2 < i < 5), (1.14) 
(x, v} 

Irik (x, v) : ri~ (x, v ) - -  qtk (x ,  v )  ~hl (x, v) 

(2 ~ i ,  k < 5 ) )  

and the quad ra tu re  

5 
d v i  -- u~! -t ~d' x-%qi~v~. 

Note that  for  a l l  x >- 1 the funct ions rik~ v) a r e  
ana ly t ic  in v ins ide  the r eg ion  B1, ~ and a r e  cont inuous 
on i t s  boundary .  

F r o m  (1.6) and (1.7), we obta in  the inequa l i t i e s  

Re[pwii(x, v) + p i ~ ( x ) ] ~ 0  ( 2 < i < 5 ) ,  (1.15) 

which hold for  a l l  x -> 1 and v E Bt, ~ .  
Let  j (2  -< j -< 5) be fixed and le t  vij  (x, v) (2 -< i -< 5) 

be the solut ion of the Cauchy p r o b l e m  

for  the s y s t e m  (1.14). On the b a s i s  of (1.15) we con-  
clude that  the f tmctions vij  (x, v) (2 -< i ~ 5) a r e  uni-  
f o r m l y  bounded for  x E (1, ~0), v E Bl ,~ ,  I pvl >- N(~) .  
The so lu t ion  vi j  (2 -< i -< 5) of s y s t e m  (1.14) c o r r e -  
sponds  to a solut ion uij (1 -< i -< 5) of s y s t e m  (1.5) of  
the fo rm 

.ij  (~, ~) = ~,~j (~, ~) - 

- -  u~ (x, v) f Ul~-~ (t, ~) t -~,, q ~  (t, ~') v~j (t, v) d t ,  
x 

U l ]  (X~ 

)< ~ uii -1 (t, 
x 

k ~ 2  

v) = - -  ull (x, v) X (1.16) 

~;) t-'/2 ~ ql~ (t, ~) v~j (t, v) dt (2:<. i % 5) �9 
k = 2  

Using  (1.13) and the boundedness  of vij  (x, v) for  
x E (1, .o), v E BI ,~ ,  I pvl -> N(~)  we obta in  f rom (1.16) 

ui~ ~t,  v, p) = 6~ 5 + O (] ,.v [ -% 

, , j ( a , ~ ,  p ) = O ( ] r ,  v l - ' )  (.~,~i,iz..), 
(1.17) 
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f o r a l l  U~Bl , c~  , I p v l - >  N ( c 0  f o r l p v l ~ o .  

In  v i e w  o f  (1 .9 ) ,  ( 1 . 17 )  w e  c a n  r e p r e s e n t  S t y ,  p) in  

t h e  f o r m  

s (v, p) = el,,, (v) + o (t) (1.18) 

f o r  a l l  v E B• I pvl  ~ N(oz) f o r  I pvl  - -  co. N o t e  t h a t  

f o r  a l l  v E Bi,oz (c~ > 0) t h e r e  h o l d s  t h e  i n e q u a l i t y  

I v - l u n ( v ) l  -> k(c~) > 0. T a k i n g  t h i s  i n to  a c c o u n t ,  w e  

c o n c l u d e  f r o m  (1 .18 )  t h a t  f o r  a n y  a r b i t r a r y  o~ > 0 t h e r e  

e x i s t s  a Pl (c~) s u c h  t h a t  f o r  p -> Pl (c~) t h e r e  a r e  n o  e l -  

g e n v a l u e s  in  t h e  r e g i o n  B1, ~ .  

A s e c o n d  e o r o l l a r y  o f  (1 .18 )  i s  t h e  f o l l o w i n g  a s s e t -  

t i on :  T h e  e i g e n v a l u e s  X ( ~ n k  , s )  o f  t h e  p r o b l e m  ( 0 . 2 ) -  

- ( 0 . 4 )  w i t h  R e  h - 0 s a t i s f y  t h e  i n e q u a l i t y  

])~ l < e a , n a x  (.~,,,,, s-*) (1.19) 

where e 0 i s  i n d e p e n d e n t  o f  ~nk,  s .  

I t  c a n  b e  s h o w n  t h a t  a l l  e i g e n v a l u e s  X ( ~ n k  , s )  s a t -  

i s f y  i n e q u a l i t y  ( 1 . 1 9 ) .  T o  p r o v e  t h i s  i t  i s  s u f f i c i e n t  to  

c o n s i d e r  t h e  c a s e  R e  v < 0. T h e  e i g e n v a ] u e s  v ( R e  v < 

< 0) a r e  d e t e r m i n e d  f r o m  t h e  e o l l i n e a r i t y  c o n d i t i o n  o f  

t h e  v e c t o r s  u 0 ( v  ) a n d  u t ( 1 ,  v), w h e r e  u i ( 1  , v) i s  t h e  

u n i q u e  s o l u t i o n  o f  e q u a t i o n  (1 .5 )  w h i c h  s a t i s f i e s  c o n -  

d i t i o n  (0 .4 ) .  T h e  a s y m p t o t i c  r e p r e s e n t a t i o n  o f  t h i s  

s o l u t i o n  f o r  x E (1,~o),  I vl -> v 0 > 1, t PVl - -  ~ i s  o f  t h e  

f o r m  ( 1 . 1 6 ) .  C o m p a r i n g  (1 .9 )  w i t h  (1 .16 ) ,  w e  f ind  t h a t  

f o r  l a r g e  v a l u e s  o f  l pvl  a n d  Re  v -< 0, I v] -> v0, t h e  

v e c t o r s  u 0 (v) and  u l ( 1 ,  v) c a n n o t  b e  c o l l i n e a r o  T h i s  

e n d s  t h e  p r o o f  o f  A s s e r t i o n  1. 

w Let us compare the results of the mathematieaI analysis of the 
stability of a detonation with the experimental facts from the theory 
of spin detonation. It should be remembered that such a comparison 
must be carried our very carefully, since the mathematical problem 
considered here is linear, whereas the phenomenon of spin detonation 
is essentially nonlinear. 

From numerous observations of spin detonation (for example, [3]) 
it is known that the "number of heads" of the spin increases with in- 
creasing tube radius r 0 or initial pressure of the mixture P0, with all 
other parameters fixed. These facts follow from a basic empirical law 
in the phenomenon of spin detonation: The dimension of a "cell" (the 
characteristic transverse dimension of the structure of the detonation 
wavefront) is of the order of magnitude of the width of the chemical 
reaction zone. 

In the model considered, this law should be compared with the 
following fact: For large values of the dimensioniess activation energy 
a (which are characteristic for the majority of detonating gas mix- 
tures), a steady plane detonation wave is unstable with respect to 
perturbations whose characteristic transverse dimension is of the order 
of the width of the reaction zone, i . e , ,  dgnk/r 0 ~ 1. 

with increasing r 0 or P0, the left-hand side of this relation de- 
creases. In order that this relation remain valid (t. e. ,  in order that 
:he condition for instability be satisfied), one must increase the value 
gnk. or, with fixed k. increase the value of n, which is analogous to 

the number of spin heads. 
It should be noted that the author does not have a rigorous proof of 

the assertion that the basic solution, which represents a steady plane 
detonation wave, is unstable only with respect to perturbations for 
which dgnk/r 0 ~ I. In order to provide a full answer to this problem, 
one would have to establish the stability of the basic solution for the 

( use dgnkr, -a ~ 0, For [his. in turn, it would be necessary (but, in 
general, not sufficient), to prove ~he stability of the basic solution 
with respect to ~me-dimensional perturbations (~nk = 0). The latter 
problem ( an apparently be solved only numerically. 

As regards the quantitative agreement between the results of the 
linear theory and the experimental data, it is not very likely that such 
agreement can be found in the large. One may expect, however, that 
the valuel ImXnl wili be close to the value of the dimensionless fre- 
quency of n-head spin co n. Indeed, calculations show [1] that I Imkn] ~ 
~ ~nt, on the other hand it is known [3] that the relation ~n = ~nt holds 
to a high degree of accuracy. 

In conclusion, let us touch upon the problem of the possibility of 
stable propagation of a steady detonation wave. 

The author has carried out a numerical computation on an elec- 
tronic computer in order to find the eigenvalues of the problem 
(0.2)-(0.4) in the region ReX >-- 0 in the case a = 0. The computations, 
carried out for 3, = 1.2, c = 0.7925, a = O, m = 1 tn a wide range of 

gnt5 

0.35 G ~,a8 ~ 4.2, 

showed that there are no eigenvalues Xn in the region ] ImXn[ <- 8.hgm; 
ReXn <- 1.4gut. (Here the zone width d was defined as the distance 
over which 8 = e -t. ) In the region indicated, the function [ F(X)I in- 
creases with increasing ImX and increases rapidly with increasing ReX. 
It is reasonable to assume that even outside the region indicated there 
will be no eigenvaiues X n with ReX n -> 0. 

To complement the numerical anaIysis of the problem (0.2)-(0.4) 
in the casea = 0, it can be pmved that fora =0, gnk > 0(gnk = 0) 
there are no eigenvalues with I m k =  O, ReX -> 0 (ReX > 0). 

On the basis of the above, one may, wirk due caution, speak 
about the stabiIity of the basic solution for a = O. From the stability 
for a = 0 there follows the stability of the basic solution for suffi- 
ciently smalI a. Apparently, the critical value a . ,  which determines 
the limit of stability, is lower than the practical values of a for known 
detonating gaseous mixtures. In any case, it would be interesting to 
determine the numerical value of the critical a,. ;fhe solution of this 
problem would involve, however, very extensive computation. 

A Second potentially possible stable detonation is detonation in 
tubes of smali radius. 

We have proved the stability for the linear approximation of the 
basic solution in the case dgnkrg t ---> ~o for c < ~1/2. For c -> 1/2 this 
result is not quite rigorous. We have no reason to assume that the 
value c = 1/2 is physically exeeptionaI. One may expect that the 
basic solution will be stable for dgnkr~ 1 --, ~o also for the case c -> i /2.  
Hence, in view of the stability with respect to one-dimensional per- 

turbations (gnk = 0), it folIows that in tubes of sufficiently small ra- 
dius a steady plane detonation wave is stabIe according to the linear 
approximation. 

It would be very interesting to establish this fact experimentally. 
The difficulties which could arise in connection with such an experi- 
ment are of two kinds. First, detonation is impossible in tubes with a 
radius below some critical value. The value of this critical radius is 
determined by factors which have not been taken into account in our 
model. Second, stability in the linear approximation does not neces- 
sarily lead to stability with respect to finite perturbations. 

The author would tike to express his deep gratitude to L. V. 
Ovsyannikov, under whose supervision the present work has been car- 
ried out. 
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